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THE BEHAVIOR OF PARALLEL AIR JETS

J. G. Edler v. Bohl

ABSTRACT. The flow behind three grids having
different opening sizes was studied to explain
irregularities in the flow behind smoothing grids.
A probe which could be calibrated in a free jet
mixing zone was developed. For the grids studied
it appears that the instability observed occurs
more easily as lattice rods of constant width are
placed closer together. This phenomenon was
followed up theoretically.

Introduction /295*

This work (1) is intended to explain the irregularities which;__ A
are observed in the flow behind the smoothing grids of blowers and '

wind tunnels, and-which persist there, in that several of the jets

produced in the"grid join together, working againstJ

the smoothing out of the air stream. For simplicity, only the

plane flow produced by grids consisting of rods with parallel edges

is investigated. It was found, in fact, that under certain conditions

every pair of air jets combines. Now, because of its greater wave-

length, this irregularity persists in the flow longer than if the

jets had remained separate. This undesired phenomenon proves to

be dependent on the density of the grid, i. e., on the magnitude

of the ratio

X= obstructed area -
channel cross section

Numbers in the margin indicate pagination in the original foreign
text.

(1) Gbttingen dissertation. Prof. Dr. L. Prandtl, reporter; Prof.
Dr. A. Betz, co-reporter.
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When ii is small the jets passing through the grid remain parallel to

the long axis of the channel, but with large ;.i they become unstable

and attract each other so that they combine. The border between the

two cases lies between i. = 0.37 and 'I,= 0.46. This is determined

from measurements behind several grids for which ';/ is increased or

decreased by a change in the number of lattice bars.- This shows that

the flow behind a smoothing grid will become more uneven the more

densely it is constructed- as long as a certain limiting value for the

density is exceeded. At small densities, of course, the smoothing

action which takes place due to the narrowing of cross section, would

be small. Therefore, the densitymist approach the limit for the

highest degree of smoothing.

Now, in order to obtain useful velocity measurements in the

particularly strong turbulent flow occurring in our grid measurements,

it was necessary to find a new probe which would provide a measure

of the static pressure in turbulent flow. The usual probe types for

smooth flow fail as soon as the flow becomes strongly turbulent,

because here the flow direction varies considerably about a central

value. The cause of this failure can be found in the great

sensitivity to obliquely incident flow. G. Cordes (2) was able to

measure the static pressure from measurements with a small disk

probe and a "turbulence probe" which was intended to determine the

turbulent transverse flows perpendicular to the plane of the disk.

He was successful: only 'for weak turbulence. Following a suggestion

from Prof. Prandtl, Mustert (3)has used a probe which--akes use of

the fact that in flow around a'cjylinder, 'the position of the point

of boundary layer separation depends on the strength of the turbulence.

By pressure measurements at three definite points of such a cylinder

used as a probe, Mustert was able to determine a measure for the

strength of tuirbulence of a non-laminar flow. In this work, the

probe is placed parallel to the edge generating the turbulence. This

avoids a perturbing flow in the dead volume in the direction of the
g.~~~~~~ ~ ~ ~ ~ . . . .-.--

id 4~~~~~~~~~~~~~~~~~~~~~~~~I

(2) G. Cordes, Ing.-Arch. 8(1937)page 245.

(3) Previously unpublished.
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cylinder axis, which would falsify the pressure indications (4) /296

A dimensionless measure of the turbulence is derived from these

pressure indications and made dependent upon a similar expression

containing the static pressure. In this way a calibration curve

rwastfound through measurements in a free jet mixing zone. From

this calibration curve, the static pressure can be determined with

some reliability in other turbulent flows.

It should be mentioned that the turbulences occurring behind

the bar grids used here are considerably stronger than those

observed in a free jet mixing zone, so that even total pressure

measurements with an ordinary pitot tube are no longer sufficient.

The angular range within which the flow direction changes continuously

due to turbulence is far greater than the directional sensitivity

of a pitot tube. But fortunately, we were also able to overcome

these problems fairly well, as shown below.

I. Experimental Part

1. The Test System

The air flow necessary for the measurements was generated by

a two-stage axial blower, a (Figure 1). The air drawn through the

propl-l-ors is led through a circular tube section, b, and a

'transition section, c, which changes the circular cross section into

a rectangular one, and into a smoothing channel, d, which i~

60 cm high and 65 cm wide. The nozzle, e, of the blower decreases

the cross section to 32 cm high while the widthremains the same.

A flow straightener, f, is placed at the entrance of the smoothing

section. Following it are three screens, gl, g2 , and g3. Likewise,

the transition section and the tubular section each -oitain one

(4) Because of his experimental conditions, Mustert was compelled
to place the probe perpendiculer to the edge generating the
turbulence, so that he had to come to terms with the problem
just mentioned.
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Figure 1. The blower used.

smoothing screen, g4 and g5.

Small pressure fluctuations were compensated by means of a

pressure regulator, h, according to Schrenk (5) and larger ones

by controlling the rate of motor rotation with a shunt resistance.

The test section, i, consisted of a channel 100 cm long, with

the same cross section as the nozzle. An opening 82 cm long and 4 cm

wide was left in the top so that the probe, j, could b introduced

and moved i the flow direction along a prismatic guide, k, and acrss

the flow direction by a rack and pinion drive, 1. The remaining

openings were closed with suitable pieces of wood.

The lateral boundaries of the test section con-sisted of[ldouble

walls, with the inner wall being 12 cm shorter than the outer one,

and with the different grids fastened to the ends. The walls were

1.8 cm thick.

The horizontal grid bars consisted of strips 5 cm wide and 1.4

cm thick, with trapezoidal cross section. The wider sides were

turned toward the flow. Careful attention was paid to the beveling, / 297

in order to get clean separation. The b-drs were fastened with

countersunk bolts and nuts to two vertical strips, and these were

(5) 0. Schrenk, Ing.-Arch. 1(1930), page 350.O5 . Schrenk, Ing.-Arch. 1(1930), page 350.
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screwedfto-the ends of the innherchannel walls. Behind this, profile

strips 6.5 cm wide were placed at both sides, gradually converting

the channel width down to the true test section width, which is\

less by twice the thickness of the inner channel wall, while avoiding

a step which would produce a separation.

Figure la shows the grid with the smallest 2l which was studied

(stable case). For allr- three grids studied, the bars were arranged so

that the widths hof the jetsladjacent to the upper and lower channel

walls, measured in the plane of the brid, were 2/3 the widti-obf a

central jet. Thereasoning±on which. this is based follows below.

The corresponding values for .\ were:

(I) 0.308

(II) 0.462

(III) 0.615

:]S:]-3~~~~ ~L ~(I) 0,308,
'=:=:== Ad ~~~ --~~ S(II) 0,462,

!II~~~ ~F~~~ o 1tt3 ~~(III) 0,615.

Cros.s section A-A -

Figure la. Test system with grid I Figure lb. Test system for
inserted. probe calibration.-

To calibrate the probe, the top of the channel was removed as

far as the nozzle. Instead of the grid, a board with a curved sheet
;~~~~~~~~~~~~~ ~ ~~~~~~ -- -... -- -}~pe ------------shaped as shown in Figure lb was inserted, covering upper half

· of the channel-cross section at a width of 20 cm. The-static pressure

in the mixing zone of the:je-tpassing through the cross section which

is reduced in this manner can, with sufficient accuracy, be taken as
-- …-. ._ 
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zero. According to Tollmien (6)the static pressure in the free

jet is about i% of the dynamic pressure.

The pressure, compared to the pressure prevailing in the test

room, was measured with an alcohol-filled vertical manometer according

to Prandtl. It was evaluated with consideration of the temperature

and barometer reading.

2. The Probes Used and the Measuring Process

A small tube of circular cross section and 2 mm diameter, with

a hole 0.2 mmin diameterjwas used as a probe to determine the st'atic

pressure and the total pressure (j in Figure 2). The hole wa§6mm
from the closed end of the tube. Flow was incident on the tube

perpendicular to its long axis. For the position just mentioned,

the deviation of the stream lines in the direction of this axis had

no effect on the pressure indications, as was shown by comparison
with ap p r ,oldinte middle.

with a .probe having i-s hold in the middle It was held parallel

to the grid bars by a streamlined support, m. At its upper end is

a disk,_ n,_, graduated in degrees, which, by means of a thin steel

cable, o, connecting the two pulleys, provides for rotation of the

probe by about 3600. The pulley at the lower end of the support, p,

is designed so that the probe can be changed. The pressure is / 298

carried from the probe through a short hose section, r, into a

brass tube, q, carried by the support.

Now the pressure readings from the probe were recorded as a

function of the angle of rotation for various degrees of turbulence

in the free jet mixing zone. Let the maximum pressure be designated

as a. As we shall see later, this is equal to the total pressure

only for very low turbulence. The minimum, which lies at 70°

(because of the symmetry of the pressure distribution, it makes no

difference which way the probe is rotated) can be called b.

On further rotation, we detect the separation of the boudary layer

6

(6) W. Tollmien, Z. angew. Math. Mech. 6(1926), page 468.



by the subsequentpressure increase. The pressure at 1150 is called c.

The curves of Figure 3 have been recorded at locations of different

strengths of turbulence behind grid I ('1= 0.308). Here, it can clearly

-I

-~~~~~~~~~~~~·tltt- 0301

)-Z 

· I 

C---. -

C~~~~~~~~~~~~~~~~~

16i 2 _ +< n

~~~~~-a _ .4.X _ _..A. -f

- 1 ,80 .14 , 60 X 0 2 60 1p0
_t " 

7k0 1,

Figure 2. The two probes. Figure 3. Pressure readings from the
probe as a function of the
angle of rotation for
different strengths of
turbulence.

be seen how the separation occurs later and later with increasing

turbulence (curves t1 to t4 ). The pressure increase becomes steadily

weaker. When t becomes larger than 1.5, we enter a region in" _.

which the eddies from the upper and lower edges of a grid bar strike

the probe, one from above and one from below, as a concentrated

pattern of eddies, so that curve t5 in Figure 3 shows two stagnation

points at 0° and 1300. In this region, then, no useful results

could be obtained. As a measure of turbulence, we have selected

7
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the expression used by Mustert:

a - ct = a-

In order to obtain a calibration curve for our probe to determine the

static pressure, we, like Mustert, plotted the ratio (a - pst)/(a - b)

versus t as the abscissa. Here a, b, and c were obtained by

measurements in the free jet (See Figure 4).

/ 299

In order to determine whether the calibration curve obtained

in this manner is independent of the dynamic pressure and the

Reynolds number, measurements were made in the free jet mixing

zone at four different velocities. The velocities at the center

of the jet were

27.5 m/s 20.3 m/s 13.6 m/s 10.2 m/s

The pressure, a, at a distance of 49 cm from the edge of the

nozzle is plotted in Figure 5 in mm alcohol. Measurements were

also made at the same velocities at distances of 26 cm, 36 cm,

and 60 cm from the nozzle edge. At low values of a the calibration

points scattered so severely that the calibration curve could not

be determined past t = 1.00.

a1

,71,8 cm,

ax __ - ~~~~~~~~~ 5.~ ,?- ~so~~~ "~-'3-4- 8

4~o o~5 o,9o o,#s ~,oo ~,o5 ~,lo ~,'5o

0,ws 8w5 430d 45 7oo 705 17,0 s 72 2?V VO >5 F

Figure 4. Calibration curve for calculation of the static pressure.

7 -6 -5 - . -3 -2 -7 1 2 3 5 cm 6

Figure 5. Pressure distribution in the freejet.

8
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In measurements behind the bar grids, two problems which

at first seemed insuperable were met: It appeared that the turbulence

produced by our grids was considerably stronger than that which was

observed in a free jet mixing zone, so that our calibration curve

would be good only for measurements at very great distance from the

grid. The second problem was in the determination of the total

pressure. A pitot tube, s, was attached to the support in such a

way that its opening was at the same position as the hole in our

probe (see Figure 2). In a flow for which the turbulence was not

greater than that in the mixing zone of a free jet, the pitot tube

indicated the total pressure with sufficient accuracy. But if we

enter a more strongly turbulent flow, the flow direction varies

through a greater angle than the directional sensitivity of a pitot

tube allows, so that the measured pressures were too low.

In the following, only grid 1 is considered initially. For

large distances from the grid (x1 = 69.2 cm) the values-ofrl a, b,

and c were measured for each measurfment point, and the total

pressure d was measured with the pitot tube. The t-values

produced with this profile were all on the calibration curve which

we plotted in the free jet, so that the static pressure here / 300

could be determined at each measurement point, as well as the

velocity. Measurements were now made in steps of a few centimeters

closer to-the grid, so that the t-values became steadily larger.

For constant x1 these are distributed so that they are smallest

for y = 0 (jet center), and, conversely, greatest for y = + r1

(center of the wake). They increas-e-on-approach to the grid.

Here 2-

y =- h

and h is the grid separation, measured from bar axis to bar axis.

Now a velocity profile- was selected which exhibits t-values

extending above the measured calibration curve at measurement points

lying in the vicinity of y = + en . In order to satisfy continuity,

the same average velocity U0 must occur with this profile as with

a profile with larger x1. As the velocity profiles for large x

9



take on rather exact cosine shapes (7) one can approximately determine

the position of the mean velocity by filling in the points where

measurements are missing according to a cosine law. Now our three

values a, b, and c are interpolated for these points, and

the following value, from continuity:

(g - Pst)/(a - b)

is plotted versus t in a new calibration curve. Here

g-p~=%~j' j

This curve is then improved in steps by complete calculation of

individual velocity profiles and supplementary checking of the

continuity 
Ju dv='const
-2

until it can finally be put in the form of Figure 6. For tr< 1.00,

other individual calibration points were obtained from measurements

at a large distance from the grid.

·. 4 S Off5 0 V , IV5 ~ Z Us ?O _ Uz 35 t f Uz5 50 
',0 _ _ _ _- _ _ _ .

4e 6:rll-- ----

etse_-~~ 1 1 l 

0, 7

OM 1---?IC/1 
J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

o0- ., o 

Figure 6. Calibration curve for calculation of the dynamic pressure.

I(7) See Footnote 2, page 2.... ....

10
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The static pressure was.determined similarly. From the

momentum law it follows that

2=_ ( u2 + p) d =const
n |~~~~8

if the small axial force jI is neglected (8). The momentum

transport through the lines y = + ± vanishes for reasons of

symmetry. The value of the constant is determined from measurement

for largedistandes from the grid. Then, for smaller and smaller xi

the mean pressure P't is determined from the momentum law and
_ _ _ _ _ st

the value of (a - pst)/(a - b) is plotted for-the matching a, b,

-and---c---versus-the corresponding --t. -The-points obtained in this

way are plotted as .* in the calibration curve. The curve obtained

in this manner was improved by complete calculation of individual

pressure curves and repeated checking from the momentum law. Figure 4

shows the final form. As can be seen from the scattering of the

calibration points, a small deiat-ion from the curve obtained by

calibration in the free jet is without any great importance,

particularly because this aIlso increases as t increases. From

the four different designations of the Ca-Ibration points we can

determine the a curve upon which we find ourselves.

!II

F- a - - a -b

4,, _ J 9 _ 11

I-~~~~~~~~~~~~~~~-

4e 4091 2 :i

Figure 7. Dependence of (g - a)/(a - b) and (d - a)/(a - b) upon
the measure of turbulence, t (obtained from experimental
points with grid I.

(8) See Footnote 2, page 2.
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Finally, by subtracting the ordinates of our two calibration

curves, we obtain a relation between (g - a)/(a - b) and our

measure of turbulence, t, which provides us a determination of

the true total pressure g (Figure 7). In order to show the

deviation of the pressure indication d of the pitot tube from the

true total pressure, (d - a)/(a - b) is also plotted versus t

(e in Figure 7). There is severe scattering here, to be sure, but

it is no doubt relat ed to the fact that with large t the flow

direction usual-ly--diverges very strongly from parallelism with the

long axis of the channel. Only our probe, through zero point

determination, always remains adjusted in the flow direction,

while the pitot tube remains unchanged.

3. The Grid Measurements

Using the measuring method developed above, measurements were

made behind three grids. Their characteristic quantities h and AA

can be determined from the following table:

h '(cm) XI

GI 14.62 0.308

G II 10.20 0.462

G III 7.90 0.615

G II and GIII were produced from G I by-adding one more

grid bar for each, so that the ratio A was increased correspondingly

(Figure 8). All the grids were arranged so that no grid bar was

directly adjacent to the channel wall, but rather so that a gap

having a width equal to 2/3 of the space between the nearest edges

of the grid bars remained at the top and bottom. Experiments have

shown that it is undesirable to have a grid bar immediately adjacent

to the channel wall, because the dead space forming behind it

extends too far into the flow as a perturbation. If one'were tq

12



AIir

34!'~ ~~~ai

deraetegpwd~inficntl, the th e asn hog

O-'J -t 1 "

-

' - .04 

0

' 3A"- ' -

Here, threfore, e are deling wit the desred,"stale",cas

-~~~~~ -13..%
As I t r i £ - C

forth aplcaio/a a sotig grid

Figure 8. Schematic representation of the three grids.

decrease the gap widthtsignificantly, then the jet passing through

would have insufficient energy to overcome the friction at the

dead space of the adjacent bar, which is always greater than the

wall friction.

/ 302

If we consider the velocity distribution behind Grid I,> . .

plotted versus y for various values of x1 (Figure 9), then

we see that the maximum velocity is on the line y = 0 for all x1.

Her tFre, therefore, we are dealing with the desired "stable" case

for the application as a smoothing grid.

From Figure 10 we can determine the deviations of the measured

total pressure from the true total pressure and from pressure a.

We see that these become steadily smaller with increasing x1.

For x1 = 69.2 cm the measured and true total pressures are

identical. At small x1 the ambiguity of the pressures a,

which we have already mentioned, appears. We see an example of

this in Figure l0a. These measurements were made at a distance of

x 1 = 11 cm from the grid.

13



Figure 9. Velocity distribution behind Grid I.

oVI I (. _ $<,

¢s'f1,=

Me' < $ 4ex i 

7- -

0,6 4 0.

O'S_ 

Dimensionless plot
and a behind

Figure 10a. Curve of d and a
versus y for x = 11 cm.

10.
d,

Figure
of d,
Grid I.



A dimensionless curve of pressure versus xl/h was plotted

for y = O,- a± ,nd -I (Figure 11). The mean dynamic pressure
2was 6.12 kg/m2 .

/ 303

Figure 11. Pressure curve behind Grid I for I=°,2

The situation is different if - is increased beyond the

stability limit, as is the case for Grid II. We fcan-atonce see

the instability in the velocity profiles (Figure 12a). Of the

four jets passing the three grid bars, each pair unites, remaining

parallel to the channel walls. At the center, then, i. e., for

y = --4 a region with reverse flow is observed out to a distance

of x = 14 cm from the grid. To be sure, no measurements are

plotted there, because at these points of low velocity the pressures

a, b, and c often differ only by less than 1 mm alcohol, which

does not provide sufficiently accurate readings with the instability

of the entire flow.

With a small shift of the center grid bar (see also Figure 8)

both the two outer jets remain at the channel walls, while fhei- - '-

two central ones combine (Figure 12b). Here, again, as in the

following figures, we must mention the gaps in the individual

velocity profiles, which are based on the inaccuracy of the

pressure readings mentioned above. To improve the clarity, the /305

negative velocities are shaded in the figures.

15
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Z~~~~~~~~~en A I

I,,,,~~~~-' r I Li

2 i li~~~~~~7

OR~ Z JrX a. -. -2 - -
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Figure 14 a and b. Velocity distribution behind Grid III.

The matching pressure curves IT ___i

can be seen in Figure 13a and 0 X.___
Figure 13b.

With Grid III the second 

grid bar could be moved in the °T

Xl direction from below ..... It 

was possible to study the --

effect of small shifts in the

x direction on the velocity ; 1 -

profile. All the velocities ._, _

measured for x = 18.5 cm are -
shown in Figure 15. This study has 

led to no new results. We see

only that the central jet

Figure 15. Velocity distribution for -
xl = 18.5 cm with shifts (xI) of the !

- 's-econd-grid-bar from-be-l-ow. - i
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combines either with the two upper jets (Figure 14a) or with the two

lower ones (Figure 14b). The latter case occurs if the grid rod

specified above is moved more than 0.4 mm in the xi direction. Here

the dead space in the center extends particularly far in the flow.

Figure 16a and Figure 16b show the matching curves for the

static pressure.

0 __ _ _ --

- _ _ ___ 4 _
0 _ _I -.

~~A-Z

O _ iV t' 1.3 V

°I~~~
a .- it X_ Hi

C- -. - - 5

-2? - - - -. 

f- , _ _ 

I I _

Z X I- __ =. I . 4

;.' A.' tr x 0 - -2 d -#i-

Figure 16 a and b. Curves for, the static pressure with Grid III.

Mechanical Lncuracies in the grid structure are the cause for

one or the other position of the jets being preferred; but if these

inaccuracies are too small, then even stopping and restarting the

motor can produce a different position of the jets. As mentioned

previously, this phenonmenon, which is undesirable for the measure-

ment, was avoided by small intentional shifts of one grid bar.

The mean dynamic pressure was 6.10 kg/m2 for Grid II and

5.26 kg/m2 for Grid III.

18
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II. Theoretical Part

1. The Hydrodynamic Stfatemenxt

The instability we have observed for the jets passing through

our grid occurs if the ratio !, which we have defined on page 1,

exceeds a value between 0.37 and 0.46. Now we shall attempt to

confirm this instability analytically. For this purpose we make use

of the method of small oscillations in which we superimpose upon a

basic flow parallel to the x-axis with the flow function

.4(x) snyvy,= Uoy + Asin my
I ~~~~~~(1)

a perturbing flow with the flow function

V' -BOO sin ly(
(2)

We presume the decay law for the amplitude A(x) to be already known

in the following. Now assume that

flc al

that is many jets of the basic flow impinge on one perturbing',

]wave(9\. Let the displacement experienced by the basic flow, %1,

due to the perturbing flow, 'VI, be T;i i, and let /¶ be neglected

in relation to x as a first approximation. Then we can write

v'Dr/ ,, U0.1
=di , a- l (3)

for the velocity component v' of the perturbing flow, considered

to be steady, if we neglect small terms in forming the material- -..

19

(9)(9) To be sure, in the numerical examples we have set p = -a; i. e.,
two jets on one perturbing wave, so that not much more than a
qualitative agreement by the calculation can be expected.



derivatives and average across the jets. On the other hand, it is

also true for the velocity components of the perturbing flow that

u = ov" v, =_ aeW |
U 8X' (4)

Correspondingly, according to (3),

(5)n(x, Y) = | UO. dx =U 0 |

(The arbitrary function of y, which properly must also be added to

this, can be set equal to zero by appropriate definition of the

points from which the displacement .n is calculated).

It is also desirable to represent the total flow by a flow

function. As the jets are directed to the side by the perturbing

flow, u', v', according to (1), then we can write for this

=Uo (y-,I) + Asin a, ( 6 )

/ 307
Here, according to (5), the flow function for the perturbing flow

is expressed by the term-Uo,;I The velocities are determined from (6):

u= 2=(t--a][Uo-+A (x)cos (y--,,)), I

v= e A-4'(X) sin (y - ) + A (x) _-cos (y-,)) +o. U l (7)

By averaging across the jets we obtain

=0which agrees with Equations (3) to (5). - u

which agrees with Equations (3) to (5).
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2. Approximate Solution of the Problem

As a strict solution of the problem formulated in the preceding

cannot be carried out, the hydrodynamic differential equations were

replaced by those obtained through averaging the velocities'ac-ross- -¥

the individual jets. The effect of turbulence is expressed by the

apparent viscosity j. Let us assume that this is a function of x

alone, and, therefore, that it is independent of y. For the normal 

turbulence case, one can write, according to a statement by 

Prandtl (10)

~~E(x~~) ~=,l~~~2J r) i(8)

If we insert into this

u=A4(x)cos 3 {ŽL und I'= 2 ' (d

then with

- 2 a 1e)
h

obviously
e:= A(x).

(9)

According to experiments by Cordes (11), 1 = 0.103 b, giving

T = 0.066 h. (See the discussion on pages 22 - 24 for an expression

for ) which more-su-itable for large x.)

Thus, the differential equations for the average motions become

a _ a .2 1 a a

CV (0' G (a- + J+( , ))+ £= 2+ t ,7~,, ' (

21
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The terms containing j on the right side of Equations (10) and

(11) appear because instead of the ordinarily used expression, eau/ay]

we have introduced the complete stress tensor 4nuI+:r) . As a result, 1

w mas the components u and v. Thus we obtained for the shear

stress and the normal stresses the expressions

tiy= +
a C = t E-6 X - ~~(12)

a,=2e eV

Now, with our expressions for u and v from (7) we enter

our Equatilons (10) and (11). In doing so, we note that i7 (xy))

is considered to be a small value, and that as a first approximation / 308

we may neglect terms of higher order. In averaging across the region

h:=2nl/aj, which is assumed to be small, the quantities dependent

on the perturbing flow (4) are considered constant. Likewise, we

can write cos ~r- / and sin , so that we can set

-sin a (y - j) = sin y - ai cos y,

cos a (y--i) = ad sin ay + cosy /

All terms in the averages of (10) and (11) which contain a sine,

cosine, or the product of both trigonometric functions as a factor

are, therefore, replaced by their average value of zero. Only the

terms with sin2 ay and\ cos2 ay make non-zero contributions.

Considering these rules, we arrive after some computation at the

two equations:

. 64' 2 '~~l 1+ -j e,]. _ 2 C+- )- -et !-, _ |
CA.4- 2 ±- +*6A +_+ EI 6 - 0 (13)~3

'
~

~~~~~~~~ .00 ~.' .,
A 2 E -3 LI U.

A'+ (Us + ~ ~ ~ 'U,~ ,__I_ __ 
O;A-q -2 O7.£\~ +A' 0 7 ax' e ey2 0 exay: , ,

(14)

(Strokes indicate differentiation with respect to x.)
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In order to eliminate the pressure, we differentiate (13) with

respect to y and (14) with respect to x and subtract the two

equations. The result is a fourth-order partial differential

equation for il(x, y):

E '2 rUo~ 42 ax

J A}+ ( 2t e_ 0 O'' ) aaJ1_ , 'J- !j2 Lo~ -T J-A',-

_ 1+ "uo eZ"o-,_(A.4 ,+ .4,2) =o-0. (15)

Now if we return to the statement for '71 in (5), with (2) we

obtain

-,=_ B(x) nf.
'i-=- PlfUo sinfly. (16)

After an easy calculation we obtain, using (16) and' throiigh 

introduction into (15) of an ordinary fourth-order differential

equation for the desired function B(x):

B"" ±B... .+' B" ( 2 2 )
(__BE 2EUo ,+ B('ic 20.4.4'f4:-2fiJ_ --

2F'f 2 vU42 o 2 2o4 ." (17)-B' ~~____4 5+ - L'j ,j±(fl4±2A'f +JOjj(7

Now, before proceeding with our calculation, we must make some

introductory comments on the decay law of A(x-)-.)

Gran Olsson (12) and Cordes (13) according to the ordinary

turbulence statement of (8), have found that A(x) decays as l/x.

They have also confirmed this by measurements. But from measurements

by Dryden and others, it appears that for large values of x/h

(h -?gridfdivision), A(x) decays in propo- 6rbin to (x/h)
-

n, with

n >11l. If the grid bars become wider and, thus, the turbulence

produced by the grid becomes stronger, this is the case even for

small x/h, as shown by-the present work. From measurements by

Dryden, Prandtl has derived an n in the vicinity of 4.5 for this

23

(12) R. Gran Olsson, Z. Angew. Math. Mech. 16(1936), page 257.

(13) See footnote 2, page 2.



investigated case. According to the current concept, the state of

turbulence behind the grid more and more approaches the so-called

"isotropic" turbulence, falling off with time, with increasing

distance from the grid. Here the old statement for the apparent

viscosity '-in ('8) is no longer valid, because du/dy vanishes

there. Therefore, Prandtl (14) developed an expanded statement,

according to which finite values of the turbulent agitation remain

even where du/dy is already zero, as detailed experimental

observations require. This statement contains the comment that

the transverse gradient of the mean velocity u which was present

at a certain time t' contributes to the instantaneous state of

turbulence at a later time t. With a :shear stress term matched to

this concept, the larger values bf n required by observation could

also be obtained theoretically.

-5 IV~~~~~~~~I

-~~~~~~~~~~ L4

'! - ' _ _ __ _ _

Figure 17. Dependence of " ,T.. on ,l (obtained from the

velocity profiles of Figures 9 and 12b). The dashed
lines a, b and c represent the formulas (20), (21),
and (20a. 
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(14) Lecture at the International Congress on Mechanics, Cambridge,
USA, 1938.



Using this statement, one obtains, instead of (9), the following

expression for £

nU i (18)

(with x=2m/I/ , where x is not the distance from the grid, but

from an initial point situated upstream from the grid). The exponent

of n can be determined practically by plotting the value of the

ratio ,=U o/(.x-U) x)-u Iversus the distance xIj of the measurement

cross section from the plane of the grid, or better, the ratio xl/h.

As the theory deveoped above is to be applied to the special

case occurring in the experiments, where the two jets combine

beyond a distance h and so form new jets fro0ftthe distance 2h,

here we must set = Ha. F~r further calculation it proves expedient

to introduce a dimensionless variable ,1=xfli which, with i= H1a and

i =2w/hl , gives

t ~~~~~= h /~(19)

Figure 17 shows a plot of 'ii in dependence on $1, based on the /310

measurements for Grid I given in Figure 9. The first part of the

curve can be reproduced by a straight line with the equation

1 -- (-- (x + O,407 h) =O, 598 (~t + I 278) ( 20)

In the following, we set :1+-.278=- ; therefore, 'i=0.5984]. This line

is marked a in Figure 17.

7'1 ~~~~~~~~~~~~-4

For > , A(x) decreases approximately with (x1 + e')4,

with e':a , giving
'i =0,00064 (t + 3,14)4

(21)

For simplicity, we write the formula

: +3,14= ]
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in the following. In Figure 17, Formula (21) is marked as b.

For Grid II there is, from the first-mieasuring cross sections,

a strong amplitude of the oscillation B(x), which is superimposed

on the original amplitude A(x), but which has twice the wavelength.

The course of the amplitude A(x) is determined here in such a way

that the velocity profile of Figure 12b is analyzed into its A

component and B component. The curve for the two components is also

shown in Figure 17. Corresponding to the doubled wavelength of B,

·( l;=x/2hj is plotted instead of `~l for these values. As it appears,

the A curve is strongly curved from the beginning due to the increased

turbulence related to the B amplitude. In order to apply our

formula, at the firs A point, in place of (20) a linear function

is assumed, which runs approximately tangential to this curve. The

formula used for this is

,~0, 31 % + ,O) 1
(20a)

(the approximations which led to the selected zero point shift can

be passed over here). Formula (21) canbe used with sufficient

accuracy for the value of 'l , if 1\ in it is replaced by ]ij .

Now we return to Equation (17) and make it dimensionless by

defining the following quantities:

B(x)=Uop( ), s=r±+efl,

ifl(X,

uOA l 1(22)

With these dimensionless quantities, (17) transforms into

D... () D L'(
4

) ( ' . + D"() 2 (+) -- 21 +

+ ! -L ,! ---~ .)+ ,-DI |t |- (23)+D'~~4 >' 6 7S.,)+([+ ,]o (23)
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Here we must note that this' differential equation is valid only

in the range within which A(x) is proportional to x Direct solution

is possible only through the series expression

D (t)= ~_;a.,/ ° +
D(-=Va,0 1(24)

Unfortunately the convergence region of the series arising in the

solution ends in the vicinity of the grid plane, just at the point

beyond which we begin to be interested in the course of 'D(~)1. An / 311

approximate discussion of the properties of the solution appears on

page 29.

In order to see how the solutions behave for larger values of i/

where A is proportional to nll, we introduce into Equation (23)

instead of y

und =-¾T-tafl 2 --d= 2 (25)

Here

-,:+% - [e' aus (21)]. (26)
(26)

The extended statement for El is taken from (18) so that, after

introducing the specified quantities, we can now obtain from (17):

D""(i)-D"'(i) (,',+ + 2 )-D () ( 2 2n.

+ D '(+$2)s-X _( + D( 2 2 ,it (27)
-I I=0.

As can be seen from the pattern of the coefficients, solution of

this differential equation by means of an asymptotic series of the

form

D () = , b, (-)|,-o

is not possible. By neglecting the terms in the individual coeffic-

ients which become small for large fJ it was possible to find two
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particular integrals of the differential equation simplified in

this way: e und
D, (s) = e' und D. (g) = e- '.-

From the second-order differential equation obtained in this way,

the two missifng solutions can then be developed after further

reasonable approximations.

But in order to link up with the solutions obtained from

differential equation (23), we must not undertake the approximations

just mentioned, because the neglected terms are not small at all in

this range. We can see this immediately if we consider the values for

y'and 7 from the table below.

So as to be able first to study the behavior of our solutions

by means of a simpler example, we write, temporarily,

E =ek U0 =o'ht1

Then, instead of (23), we obtain

- .DsI-D"' () - D"() + D'(,) * - D ()=O(28)
D" k ~~~~~~~~~(28)

With
D($) = ee 

we obtain, for the roots o/ of the principal equation

1 h+ l/*+ 1 koA *+-,..a=1|I

,3 = + 1, + l + . (29,)
0 ~2k Jf4Ki+I (29)

'Ask --ia supposed to be much less than unity, al becomes large

and -ositive,, land Gil small and negative, while a2\ and a-3 are of normal

magnitude.

28



It is well known that the potential flows, which one knows from / 312

the frictionless liquid, belong to the solutions of the Navier-Stokes

differential equations. The solutions built up with :2i and !a3Lin our

case are of that type. The term D2 (-)Idecays with increasing ~1 like

a disturbance produced by an upstream barrier which is periodic with

y, while '3(')\ is explained by the diversion of the basic flow

before a downstream barrier which is periodic with y. With o4\, we

obtain the solution-be-ing- considered for our flow with lower apparent

viscosity. As we can see from the binomial expansion of 4\ , it

decays slowly with j . The term D1 (')\ increases strongly ahead of

the downstream barrier. Thus, it is suited to represent the asymptotic

behavior of the velocity changes occurring through a turbulent boundary

layer before a barrier as it approaches the barrier.

Now, in order to determine more accurately the properties of

the solution of (23), as the strict solution is not attainable,

the following expedient was taken: We investigated the approximation

obtained if the whole region is dissected into a number of segments,

so that the coefficients of (23) are inserted for each segment

(from Vito ~2! ) with the constant value which they have in the center

of the segment.

First, the following table will explain the numbers L;Y,,/I
and n obtained from the experiment:

Grid I Grid II

7

.,
I

0,210
3,226

(30)
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Now, using the values of y and 6/ from (30), the coefficients
of the differential equation (23) are calculated for three definite
values of i, so that we obtain a differential equation with con-

stant coefficients for each ~,(i=a, b, c)l the solutions of which also
satisfy (23) in the near vicinity of the 3 concerned. The four

resulting constants are left undefined, as a quantitative comparison
with experiment cannot be performed. Now there appear the following

differential equations for Grid I:

tf~l-, -- 2,132: D""(t)- 8,879D"'(f) +i,949D"(t) + 6,412D'($)-2,07 3 D(Z)-O0,j
e fO rO----3,202: D""(t)-10,900D"'(~)-0,256D"(,) +10,178D'(r)-O,360D(f)=o,

for--=4,280: D ....""()-13,63SD"'()-1,020D"(~) +13,330D'(0)+o,2 3 8D(.)=o.J (31)

The corresponding differential equations for Grid II are:

s'[-Or = 1,854: D""($)-7,959D"'(&) +7,520D"($) +0,727D'($)-7,356D(,) =0,
Ol $b =2,924 D""(s)-7,627D"'(4) +1,827D"(¢) +5,784D'(S)-2,360D(-) =0,

!-for $, =4,002: D""(~)-8,326D"'(~) +o0,043D'"() +7,607D'()--0,793D(~) =o.

In the same way, for Grid I, we derive three differential

equations from (27):

7fr Xat=11,14: D""(t)-I1,377D"'(4)-1,902D"(s)+11,344D'(s) -f+0,934D($t)= |I
Or l$,= 12,64: D "(.)-12,822D '(.')-1,957D"(~) +12,811D'(C) +0,983D(~)=o (33)

(33)Tf o- /= 14,14: D""(')-14,292D"'(f)--1,978D"() + 14,288D'() +0,998D() =---0.

/ 313
All the equations are solved with the statement

D($) Cea.j

or Equations (33) with

D(s) =CectJ
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The principal equations are solved for the roots ai1 to o4\ by Graeff's

method. Their values are in the following table, which also includes

the values of al to a. for comparison with those from (28), as the

former transform into the latter.

0, I_ I 0- i

~GridPI (34a)
a 8,558 -0,853 q 0,827' 0,347 

1 0,837 -0,955 + 0,982 0.035
:ec + 13,628 -0,971 +0,996 . -0oOS 8

,d + 1 1.456 -0,997 0,9995 -0- o,o81 5
+, q 12,.896 - (,99,7 +0,9997 -0,076
+ ,t14,360 -0,9979 + ,9999 -0.070

'GrIgnl
n +6,875 I -0,750 0,91 7 0,7681i 

.~o + 7,272 -- 0,893 0,784 ! 0,464 (34b)
4 I +8,211 -0,951 +0.960 + 0,106

According to the considerations connected with Equation (29),

-the sign of the root a4l(or its real portion) must be considered

decisive for stability or instability. Our calculations, from

which not much more than a qualitative agreement with observations

could be expected according to the comment in the footnote on

page 19, accordingly show a moderate instability for the positions

near the grid even for Grid I, but stability in the later course.

Comparison with Grid II shows a distinct increase of the instability

with Grid II. Recalculation of the state of Grid II after the

transition to the doubled perturbing wavelength may be unnecessary,

as numerical values of n are obtained for the turbulent exchange

on replacement of ,l by nI according to Figure-17. They differ only

slightly from those of Grid I according to (21). After the alteration,

therefore, one would calculate for the sLtat-eof-Grid II flow a

stability corresponding to that given for the positions -, to ~tl
for Grid I.
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As for instability on a short segment of the path, with sub-

sequent stability, it should be noted that very small original

perturbations can grow to dangerous size only on a long path.

The overturning of the flow is, therefore, quite significantly

supported by any sort of unevenness in the structure of the grid.

When the experiments were being'carried out, it actually appeared

that Grid III (see Figure 8), for which Al has the greatest value

of the grids studied, is the most sensitive to mechanical

inaccuracies in the grid structure. When using a smoothingTgrid,f

then, it is desirable to design it so that the grid density 

does not exceed the value specified on page 2.

Summary

In order to explain the irregularities occurring in the flow

behind smoothing grids, the flow was investigated behind three grids

with different apertures. In order to obtain useful velocity measure-

ments in this particularly severly turbulent flow, a probe was de-

veloped which could He calibrated in a free jet mixing zone. In order

to measure the static pressure in a flow for which the turbulence

is considerably stronger than that in a free jet mixing zone,

calibration curves were derived to determine the static pressure, the

total pressure, and the dynamic pressure in their dependence on a

turbulence measure which the probe also provides. For each measure-

ment point, three pressure readings are needed at different angles

of rotation for the probe.

For the grids studied it was found that the instability observed

occurs more easily the more closely together the grid rods are built,

with their widths remaining the same.

This phenomenon was followed up theoretically by application of

the hydrodynamic equations of motion produced by averaging the

velocities across the individual jets. The result confirmed the

instability observed -iith Grid II and showed that even the flow from

Grid I probably has an unstable region, which would have appeared
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with greater displacement of a grid bar.

The experiment was performed at the Kaiser Wilhelm Institute
for Flow Research at]GBttingen.
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